



## Batch Garud & Brahmos, Mathematics EPS V (Quadratic Equation) Student's Name- Duration-1 Hr Date-06-07-2020

| 1. If the roots of $ax^2 + bx + c = 0$ (a>0), be each greater than unity, then what is the condition?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.The quadratic equation whose roots are twice the roots of $2x^2 - 5x + 2 = 0$ is                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) a + b + c > 0<br>(c) a + b + c = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) a + b + c < 0<br>(d) None of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                           | (a) $8x^2 - 10x +$<br>(c) $2x^2 - 5x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $x^2 - 5x +$<br>(d) none of the                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| 2. If sin $\alpha$ and cos $\alpha$ are the root<br>then $p^2 - q^2 + 2pr =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ts of the equation $p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $px^2 + qx + r = 0,$                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $b = 0$ and $x^2 + b^2$ alue of (a + b) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | ve a common                                                                                                                                                                                                                                                                       |
| (a) 1 (b) – 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) 2                                                                                                                                     | (a) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) — 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) -1/2                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| 3. The number of real solution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he roots of the e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | equation $x^2 - 2x$                                                                                                                                                                                                                                                                                                                                                                                                                      | -1 = 0, then the                                                                                                                                                                                                                                                                  |
| (a) 2 (b) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) 5                                                                                                                                     | value of $\alpha^2 + \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (a) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (c) 6                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) 2                                                                                                                                                                                                                                                                             |
| 4. The condition that one root o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f the equation $ax^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x^{2} + bx + c = 0$                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| may be double of the other, is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e the roots of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                      | + 1 = 0, then the                                                                                                                                                                                                                                                                 |
| (a) $9a^2 = 2bc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $2c^2 = 9ab$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           | equation whose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e roots are $\frac{\alpha}{\beta}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>a</u> is                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| (c) $2b^2 = 9ac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $9b^2 = 2ac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           | (a) $x^2 - x + 1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $x^2 + x + 1$                                                                                                                                                                                                                                                                                                                                                                                                                        | = 0                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (c) $x^2 - x - 1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) $x^2 + x - 1$                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| 5. The roots of the equations $4^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | are                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0                                                                                                                                                                                                                                                                               |
| (a) 1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) 2 <i>,</i> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           | 18 If one root o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of $x^2 - x - k = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he square of the                                                                                                                                                                                                                                                                                                                                                                                                                         | other then $k$ is                                                                                                                                                                                                                                                                 |
| (c) 1, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (d) 2 <i>,</i> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                           | equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\pi x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | be square or the                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1-) 2 1 /2                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| 6. The number of roots of the ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quation 2 $sin^2	heta$ +3 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sin \theta + 1 = 0$ in                                                                                                                  | (a) $3 \pm \sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) $2 \pm \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                   |
| (0, 2π) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (c) 2 ±√5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) 5 <u>±√2</u>                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |
| (a) 1 (b) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (c) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) 3                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of $x^2 + a^2 = 8x + a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| 7. The maximum and minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | value of $\frac{x^2 - x + 1}{x^2 - x + 1}$ for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | real x is                                                                                                                                 | (a) $2 \le a \le 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) - 8 ≤ a ≤ 2                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (c) $-2 \le a \le 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (c) none of the                                                                                                                                                                                                                                                                                                                                                                                                                          | se                                                                                                                                                                                                                                                                                |
| (a) maximum is 5, minimum is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| (b) maximum is 3, minimum is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta$ is not a perfect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                          | e roots are                                                                                                                                                                                                                                                                       |
| (c) maximum is 2, minimum is ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (a) real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (b) equal                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |
| (d) none of these.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (c) rational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) irrational                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ()                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                           | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                   |
| 8. The value of $k$ so that the e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 = 0 and $x^2$ –                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent of $x + px + q =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 in place of 13                                                                                                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ommon is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 = 0 and $x^2$ –                                                                                                                         | 21. The coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent of x+ px+ q =<br>vere found to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 was taken as                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ommon is<br>(b) -3 or 27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5 = 0$ and $x^2 - $                                                                                                                      | 21. The coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vere found to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 was taken as                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
| 3x - 4 = 0 have one root in c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ommon is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 = 0 and $x^2 -$                                                                                                                         | 21. The coefficient and its roots w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vere found to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 was taken as                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           | 21. The coefficient and its roots wo original equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vere found to be n are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 was taken as<br>- 2 and - 15. 1                                                                                                                                                                                                                                                                                                                                                                                                        | The roots of the                                                                                                                                                                                                                                                                  |
| 3x - 4 = 0 have one root in c<br>(a) $- 3$ or $-27/4$<br>(c) 3 or $27/4$<br>9. The number of real solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                           | 21. The coeffici<br>and its roots w<br>original equatio<br>(a) 3, 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vere found to be n are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 was taken as<br>- 2 and - 15. T<br>(c) 3, 10                                                                                                                                                                                                                                                                                                                                                                                           | The roots of the<br>(d) -3, -10                                                                                                                                                                                                                                                   |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                           | <ul><li>21. The coefficiand its roots woriginal equatio</li><li>(a) 3, 7</li><li>22. The roots of</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>0 was taken as 1</li> <li>2 and - 15. T</li> <li>(c) 3, 10</li> <li>r)x<sup>2</sup> + (r - p) x +</li> </ul>                                                                                                                                                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are                                                                                                                                                                                                                                |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4                                                                                                                                     | <ul> <li>21. The coefficiand its roots woriginal equatio (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r),</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 was taken as<br>- 2 and - 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),                                                                                                                                                                                                                                                                                                                                             | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1                                                                                                                                                                                                                           |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4                                                                                                                                     | <ul><li>21. The coefficiand its roots woriginal equatio</li><li>(a) 3, 7</li><li>22. The roots of</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>0 was taken as 1</li> <li>2 and - 15. T</li> <li>(c) 3, 10</li> <li>r)x<sup>2</sup> + (r - p) x +</li> </ul>                                                                                                                                                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1                                                                                                                                                                                                                           |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) 4<br>adratic equation                                                                                                                 | <ul> <li>21. The coefficiand its roots woriginal equatio (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 was taken as<br>- 2 and - 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)                                                                                                                                                                                                                                                                                                                        | (d) -3, -10<br>(p - q) = 0 are<br>1<br>, ½                                                                                                                                                                                                                                        |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation                                                                                                                 | <ul> <li>21. The coefficiand its roots woriginal equatio (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> <li>23. If the equation (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>$(x + n)^2 = (m - 1)^2$                                                                                                                                                                                                                                                                                           | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) 4<br>adratic equation<br>ts                                                                                                           | <ul> <li>21. The coefficiand its roots woriginal equatio (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> <li>23. If the equationary equation are non-zero constraints and the equational equation and the equational equation and the equational equation and the equational equation and the equationary equilibrium equationary equationary equilibrium equationary</li></ul>                                                                                                                                                                                                      | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (m)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>[x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied                                                                                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 4<br>adratic equation<br>ts<br>se                                                                                                     | <ul> <li>21. The coefficiand its roots woriginal equation (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> <li>23. If the equation are non-zero continue the ordered the the order the order order the order the</li></ul>                                                                                                                                                                                                       | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>$(x + n)^2$ = (m -<br>≠ $n^2$ , is satisfied<br>ual to                                                                                                                                                                                                                                                            | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots<br>11. The value of $\lambda$ for which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | <ul> <li>21. The coefficiand its roots woriginal equation (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> <li>23. If the equation are non-zero content the ordered (a) (0, -1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (m)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0 was taken as<br>= 2 and - 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n)^2 = (m -<br>≠ n^2, is satisfied<br>ual to<br>(b) (-1, 0)                                                                                                                                                                                                                                                  | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | <ul> <li>21. The coefficiand its roots woriginal equation (a) 3, 7</li> <li>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),</li> <li>23. If the equation are non-zero continue the ordered the the order the order order the order the</li></ul>                                                                                                                                                                                                       | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (m)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>$(x + n)^2$ = (m -<br>≠ $n^2$ , is satisfied<br>ual to                                                                                                                                                                                                                                                            | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n                                                                                                                                                                                 |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots<br>11. The value of $\lambda$ for which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | 21. The coefficiand its roots woriginal equation (a) 3, 7<br>22. The roots of (a) $(r - q)/(q - r)$ , (c) $(q - r)/(p - q)$ , 23. If the equation are non-zero content the ordered (a) $(0, -1)$ (c) $(1, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>onstants and $m^2$<br>d pair (p, q) is equ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n)^2 = (m -<br>≠ n^2, is satisfied<br>ual to<br>(b) (-1, 0)<br>(d) (0, 1)                                                                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n<br>by $x=pm + gn$ ,                                                                                                                                                             |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots<br>11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | 21. The coeffici-<br>and its roots w<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) $(r - q)/(q - r)$ ,<br>(c) $(q - r)/(p - q)$ ,<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) $(0, -1)$<br>(c) $(1, 0)$<br>24. The positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>d pair (p, q) is equal<br>to value of m, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0 was taken as<br>= 2 and - 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots                                                                                                                                                                                          | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n<br>by $x=pm + gn$ ,                                                                                                                                                             |
| $3x - 4 = 0 \text{ have one root in c}$ (a) - 3 or -27/4 (c) 3 or 27/4 9. The number of real solution  . (a) 1 (2) 3 10. If a, b, c $\epsilon$ R and a + b + c $3ax^2 + 2bx + c = 0$ has (a) non real roots (c) real roots 11. The value of $\lambda$ for whic $2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$ the interval. (a) (1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | 21. The coeffici-<br>and its roots we<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) $(r - q)/(q - r)$ ,<br>(c) $(q - r)/(p-q)$ ,<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) $(0, -1)$<br>(c) $(1, 0)$<br>24. The positive<br>$12x^2 + mx + 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>onstants and $m^2$<br>id pair (p, q) is equal<br>to value of m, for<br>b = 0 are in the ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 0 was taken as<br>= 2 and = 15. 1<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n)^2 = (m -<br>≠ n <sup>2</sup> , is satisfied<br>ual to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n<br>by $x=pm + gn$ ,<br>of the equation                                                                                                                                          |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots<br>11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +                                                                                | 21. The coeffici-<br>and its roots w<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) $(r - q)/(q - r)$ ,<br>(c) $(q - r)/(p - q)$ ,<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) $(0, -1)$<br>(c) $(1, 0)$<br>24. The positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>d pair (p, q) is equal<br>to value of m, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0 was taken as<br>= 2 and = 15. 1<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n)^2 = (m -<br>≠ n <sup>2</sup> , is satisfied<br>ual to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is                                                                                                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>$n)^2$ , where m, n<br>by $x=pm + gn$ ,                                                                                                                                                             |
| 3x - 4 = 0 have one root in c<br>(a) - 3 or -27/4<br>(c) 3 or 27/4<br>9. The number of real solution  .<br>(a) 1 (2) 3<br>10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>(a) non real roots<br>(c) real roots<br>11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>(a) (1, 2)<br>(c) (- $\infty$ , 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | from the second | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in                                                         | 21. The coefficiand its roots we original equation (a) 3, 7<br>22. The roots of (a) $(r - q)/(q - r)$ , (c) $(q - r)/(p - q)$ ,<br>23. If the equation are non-zero contribution the ordered (a) $(0, -1)$ (c) $(1, 0)$<br>24. The positive $12x^2 + mx + 5$<br>(a) $5\sqrt{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>d pair (p, q) is equal<br>to value of m, for<br>$b = 0$ are in the ration $(b) \frac{5\sqrt{10}}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$                                                                                                                                         | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$                                                                                                           |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>(a) 1 (2) 3 10. If a, b, c $\epsilon$ R and a + b + c $3ax^2 + 2bx + c = 0$ has (a) non real roots (c) real roots 11. The value of $\lambda$ for whic $2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$ the interval. (a) (1, 2) (c) (- $\infty$ , 1) 12. For what value of m will the solution of the solut | from the second | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in                                                         | 21. The coefficiand its roots we original equation (a) 3, 7<br>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),<br>23. If the equation are non-zero conditioned by the root of the ro                                                                                                                                                                                                             | vere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>d pair (p, q) is equal<br>to a value of m, for<br>$x = 0$ are in the ration $(x + m)^2 - (x + m$ | x 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value (b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the                                                                                                                         | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $                                                                                               |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>(a) 1 (2) 3 10. If a, b, c $\epsilon$ R and a + b + c $3ax^2 + 2bx + c = 0$ has (a) non real roots (c) real roots 11. The value of $\lambda$ for whic $2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$ the interval. (a) (1, 2) (c) (- $\infty$ , 1) 12. For what value of m will th + m + 8 = 0 have equal roots?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x] <sup>2</sup> - 3 x -4 = 0 is<br>(c) 2<br>= 0, then the quadratic of<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppose<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in                                                         | 21. The coefficiand its roots we original equation (a) 3, 7<br>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q), 23. If the equation are non-zero constructed than the ordered (a) (0, -1) (c) (1, 0)<br>24. The positive $12x^2 + mx + 5$ (a) $5\sqrt{10}$<br>25. If $x^2 - px + (a)$ is less than 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>ion for $(x + m)^2 - (x + m)^2 -$     | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value (b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th                                                                                                    | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1                                                                                      |
| $3x - 4 = 0 \text{ have one root in c}$ (a) - 3 or -27/4 (c) 3 or 27/4 9. The number of real solution  . (a) 1 (2) 3 10. If a, b, c $\epsilon$ R and a + b + c $3ax^2 + 2bx + c = 0$ has (a) non real roots (c) real roots 11. The value of $\lambda$ for whic $2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$ the interval. (a) (1, 2) (c) (- $\infty$ , 1) 12. For what value of m will th + m + 8 = 0 have equal roots? (a) -1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | from the second | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in                                                         | 21. The coefficiand its roots we original equation (a) 3, 7<br>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),<br>23. If the equation are non-zero conditioned by the root of the ro                                                                                                                                                                                                             | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>ion for $(x + m)^2 - (x + m)^2 -$     | x 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value (b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the                                                                                                                         | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1                                                                                      |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>(a) 1 (2) 3 10. If a, b, c $\epsilon$ R and a + b + c $3ax^2 + 2bx + c = 0$ has (a) non real roots (c) real roots 11. The value of $\lambda$ for whic $2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$ the interval. (a) (1, 2) (c) (- $\infty$ , 1) 12. For what value of m will th + m + 8 = 0 have equal roots?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x] <sup>2</sup> - 3 x -4 = 0 is<br>(c) 2<br>= 0, then the quadratic of<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppose<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in                                                         | 21. The coeffici-<br>and its roots w<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) (r - q)/(q - r),<br>(c) (q - r)/(p-q),<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) (0, -1)<br>(c) (1, 0)<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px +$<br>(a) is less than 2<br>(c) is greater that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>tion $(x + m)^2 - (x + m)^2 - ($     | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have an                                                                             | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value                                                                          |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>(a) -1/2 $(c) - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the quadratic of<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppos<br>(b) $(\frac{3}{2}, 2)$<br>(d) (-∞, 0)<br>the equation (m + 1<br>(b) 2<br>(d) 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>$(x^2 + 2(m + 3)x)$                                  | 21. The coeffici-<br>and its roots w<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) (r - q)/(q - r),<br>(c) (q - r)/(p-q),<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) (0, -1)<br>(c) (1, 0)<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px +$<br>(a) is less than 2<br>(c) is greater that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>ion for $(x + m)^2 - (x + m)^2 -$     | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have an                                                                             | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value                                                                          |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) - 2$ 13. If $\alpha$ , $\beta$ be the roots of $x^2 + p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ommon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the qua<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppos<br>(b) $(\frac{3}{2}, 2)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>$(x^2 + 2(m + 3)x)$                                  | 21. The coeffici-<br>and its roots we<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) (r - q)/(q - r),<br>(c) (q - r)/(p-q),<br>23. If the equat-<br>are non-zero co-<br>then the ordered<br>(a) (0, -1)<br>(c) (1, 0)<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px + 4$<br>(a) is less than 2<br>(c) is greater that<br>26. $x + 2$ is a co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>fion $(x + m)^2 - (x + m)^2 - (x + m)^2$<br>and pair (p, q) is equal<br>to a re in the ration of the second s    | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have an                                                                             | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value                                                                          |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for which<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) -2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x] <sup>2</sup> - 3 x]-4 = 0 is<br>(c) 2<br>= 0, then the qua-<br>(b) rational roo<br>(d) none of the:<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>$(x^2 + 2(m + 3)x)$                                  | 21. The coefficiand its roots we original equatio (a) 3, 7<br>22. The roots of (a) (r - q)/(q - r), (c) (q - r)/(p-q),<br>23. If the equatare non-zero coefficient the ordered (a) (0, -1) (c) (1, 0)<br>24. The positive $12x^2 + mx + 5$ (a) $5\sqrt{10}$<br>25. If $x^2 - px + 4$ (a) is less than 2 (c) is greater that 26. $x + 2$ is a coordination $\frac{a}{b}$ is equal to the positive $\frac{a}{b}$ is equal to the posit | rere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>ion for $(x + m)^2 - (x + m)^2 -$     | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>val to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have ar<br>the expression (x                                                        | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value<br>$x^{2} + bx + a$ ). The                                               |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) - 2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value<br>(a) p + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the quad-<br>(b) rational roo<br>(d) none of the<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppose<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$<br>(b) q + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>) $x^2$ + 2(m + 3)x<br>The be the roots of<br>is     | 21. The coeffici-<br>and its roots we<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) (r - q)/(q - r),<br>(c) (q - r)/(p-q),<br>23. If the equat-<br>are non-zero co-<br>then the ordered<br>(a) (0, -1)<br>(c) (1, 0)<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px + 4$<br>(a) is less than 2<br>(c) is greater that<br>26. $x + 2$ is a co-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>fion $(x + m)^2 - (x + m)^2 - (x + m)^2$<br>and pair (p, q) is equal<br>to a re in the ration of the second s    | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have an                                                                             | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value                                                                          |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for which<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) -2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x] <sup>2</sup> - 3 x]-4 = 0 is<br>(c) 2<br>= 0, then the qua-<br>(b) rational roo<br>(d) none of the:<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>) $x^2$ + 2(m + 3)x<br>The be the roots of<br>is     | 21. The coeffici-<br>and its roots we<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) $(r - q)/(q - r)$ ,<br>(c) $(q - r)/(p - q)$ ,<br>23. If the equatare<br>are non-zero construction<br>(c) $(1, 0)$<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px +$<br>(a) is less than 2<br>(c) is greater that<br>26. $x + 2$ is a construction<br>(a) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>ion for $(x + m)^2 - (x + m)^2 -$     | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>val to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have ar<br>the expression (x<br>(c) 3                                               | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value<br>$x^{2} + bx + a$ . The<br>(d) 4                                       |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) - 2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value<br>(a) p + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x) <sup>2</sup> - 3 x -4 = 0 is<br>(c) 2<br>= 0, then the quad-<br>(b) rational roo<br>(d) none of the<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppose<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$<br>(b) q + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>) $x^2$ + 2(m + 3)x<br>The be the roots of<br>is     | 21. The coefficiant its roots we original equation (a) 3, 7<br>22. The roots of (a) $(r - q)/(q - r)$ , (c) $(q - r)/(p - q)$ ,<br>23. If the equation are non-zero constructed that the ordered (a) $(0, -1)$ (c) $(1, 0)$<br>24. The positive $12x^2 + mx + 5$ (a) $5\sqrt{10}$<br>25. If $x^2 - px + (a)$ is less than 2 (c) is greater that 26. $x + 2$ is a construct $\frac{a}{b}$ is equal to (a) 1<br>27. If the sum of $x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rere found to be<br>n are<br>(b) -3, -7<br>The equation (q -<br>1/2<br>1<br>tion $(x + m)^2 - (x + m)^2$<br>and pair (p, q) is equivalent<br>to a value of m, for<br>$b = 0$ are in the ration $(b + m)^2 - (x + m)^2 -$ | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value (b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have ar<br>the expression (x<br>(c) 3<br>e expression (qx <sup>2</sup> )                | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value<br>$x^{2} + bx + a$ . The<br>(d) 4<br>+ 2x + 3q = 0                      |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) - 2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value<br>(a) p + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(x) <sup>2</sup> - 3 x -4 = 0 is<br>(c) 2<br>= 0, then the quad-<br>(b) rational roo<br>(d) none of the<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppose<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$<br>(b) q + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) 4<br>advatic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>) $x^2$ + 2(m + 3)x<br>The be the roots of<br>is     | 21. The coeffici-<br>and its roots w<br>original equatio<br>(a) 3, 7<br>22. The roots of<br>(a) (r - q)/(q - r),<br>(c) (q - r)/(p-q),<br>23. If the equat<br>are non-zero co<br>then the ordered<br>(a) (0, -1)<br>(c) (1, 0)<br>24. The positive<br>$12x^2 + mx + 5$<br>(a) $5\sqrt{10}$<br>25. If $x^2 - px +$<br>(a) is less than 2<br>(c) is greater that<br>26. $x + 2$ is a co<br>ratio $\frac{a}{b}$ is equal to<br>(a) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>ion $(x + m)^2 - (x + m)^2$<br>id pair (p, q) is equal<br>to a value of m, for<br>i = 0 are in the ration of the second sec  | 0 was taken as<br>- 2 and - 15. T<br>(c) 3, 10<br>r) $x^2$ + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>Jal to<br>(b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have ar<br>the expression (x<br>(c) 3<br>e expression (qx <sup>2</sup><br>e value of a is equ | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value<br>$x^{2} + bx + a$ . The<br>(d) 4<br>+ 2x + 3q = 0)<br>value            |
| 3x - 4 = 0  have one root in c $(a) - 3  or  -27/4$ $(c) 3  or  27/4$ 9. The number of real solution  .<br>$(a) 1 \qquad (2) 3$ 10. If a, b, c $\epsilon$ R and a + b + c<br>$3ax^2 + 2bx + c = 0$ has<br>$(a) \text{ non real roots}$ $(c) \text{ real roots}$ 11. The value of $\lambda$ for whic<br>$2(\lambda^2 + 1)x + (\lambda^2 - 3\lambda + 2) = 0$<br>the interval.<br>$(a) (1, 2)$ $(c) (-\infty, 1)$ 12. For what value of m will th<br>+ m + 8 = 0 have equal roots?<br>$(a) -1/2$ $(c) - 2$ 13. If $\alpha, \beta$ be the roots of $x^2 + p$<br>$x^2 + px + r = 0$ , then the value<br>(a) p + r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formon is<br>(b) -3 or 27/4<br>(d) 3 or -27/4<br>(d) 3 or -27/4<br>$x ^2 - 3 x -4 = 0$ is<br>(c) 2<br>= 0, then the quad-<br>(b) rational roo<br>(d) none of the<br>(b) rational roo<br>(d) none of the<br>the quadratic of<br>has roots of oppos<br>(b) $\left(\frac{3}{2}, 2\right)$<br>(d) $(-\infty, 0)$<br>the equation (m + 1<br>(b) 2<br>(d) 1/2<br>$x - q = 0$ and $\gamma, \delta$<br>e of $(\alpha - \gamma)(\alpha - \delta)$<br>(b) q + r<br>(d) none of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) 4<br>adratic equation<br>ts<br>se<br>equation $3x^2$ +<br>site signs, lies in<br>) $x^2$ + 2(m + 3)x<br>5 be the roots of<br>is<br>se | 21. The coefficiant its roots we original equation (a) 3, 7<br>22. The roots of (a) $(r - q)/(q - r)$ , (c) $(q - r)/(p - q)$ ,<br>23. If the equation are non-zero constructed that the ordered (a) $(0, -1)$ (c) $(1, 0)$<br>24. The positive $12x^2 + mx + 5$ (a) $5\sqrt{10}$<br>25. If $x^2 - px + (a)$ is less than 2 (c) is greater that 26. $x + 2$ is a construct $\frac{a}{b}$ is equal to (a) 1<br>27. If the sum of $x = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rere found to be<br>n are<br>(b) -3, -7<br>the equation (q -<br>1/2<br>1<br>food (x + m) <sup>2</sup> - (c)<br>constants and m <sup>2</sup><br>rd pair (p, q) is equ<br>e value of m, for<br>b = 0 are in the ration<br>(b) $\frac{5\sqrt{10}}{12}$<br>-1 > 0 for all real<br>mmom factor of the<br>product, then the<br>(b) 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0 was taken as<br>= 2 and = 15. T<br>(c) 3, 10<br>r)x <sup>2</sup> + (r - p) x +<br>(b) (p-q)/(q-r),<br>(d) (r-p)/(p - q)<br>(x + n) <sup>2</sup> = (m -<br>≠ n <sup>2</sup> , is satisfied<br>value (b) (-1, 0)<br>(d) (0, 1)<br>which the roots<br>tio 3 : 2, is<br>(c) $\frac{5}{12}$<br>I values of x, the<br>(b) is greater th<br>(d) can have ar<br>the expression (x<br>(c) 3<br>e expression (qx <sup>2</sup> )                | The roots of the<br>(d) -3, -10<br>(p - q) = 0 are<br>1<br>, $\frac{1}{2}$<br>n) <sup>2</sup> , where m, n<br>by $x=pm + gn$ ,<br>of the equation<br>(d) $\frac{12}{5}$<br>en $ x $<br>han 1<br>hy value<br>$x^{2} + bx + a$ . The<br>(d) 4<br>+ 2x + 3q = 0)<br>hal to<br>(d) -6 |

Address - 1-B-24 Mahaveer Nagar Extension, Opp. Agni Shaman Kendra, Kota (Rajasthan)-324005



28.If  $\alpha$ ,  $\gamma$  are the roots of the equation  $ax^2 + bx + c = 0$  are (a)  $-\alpha$ ,  $-\beta$ (b)  $\alpha$ ,  $-\beta$ (c) *α*, 1/ β (d)  $1/\alpha$ ,  $1/\beta$ 

29. The roots of the equation  $x^2 - \left(\frac{4}{\sqrt{5}+1} + \frac{1}{\sqrt{5}-1}\right)x + 1 = 0$  are: (a)  $\frac{4}{\sqrt{5}}$  (b)  $-\frac{4}{\sqrt{5}+1}, -\frac{4}{\sqrt{5}-1}$ (c)  $\frac{-1\pm\sqrt{\left(\frac{4}{\sqrt{5}+1}+\frac{1}{\sqrt{5}-1}\right)^2-4}}$ (d)  $\frac{4}{\sqrt{5}+1}$ ,  $\frac{1}{\sqrt{5}-1}$ 

30. The number of solution of the equation  $|x|^2 - 3|x| + 2 = 0$  is (a) 2 (b) 3 (c) 4(d) 5

31. If the equations  $x^2 - px + q = 0$  and  $x^2 + qx - p = 0$  have a common root, then which of the following will hold true ? (a) p = q(b) p + q = 2(c) p + q = 1 (d) p - q = 1

32. If  $\alpha$ ,  $\beta$  are the roots of the quadratic equation  $4x^2 - 4x + 1 = 0$ , then  $\alpha^3 + \beta^3$  is equal to

(a)  $\frac{1}{4}$ (b)  $\frac{1}{2}$ (c) 16 (d) 32

33.If the roots of the equations  $\lambda^2 + 8\lambda + \mu^2 + 6\mu = 0$ , are real, then  $\mu$  lies between

(a) -2 and 8 (b) -3 and 6 (c) -8 and 2 (d) -6 and 3

34. If a and b are non zero roots of  $x^2 + ax + b = 0$ , then the least value of  $x^2 + ax + b$  is

(b) - <sup>9</sup>/-(a)  $\frac{2}{2}$ (c)  $\frac{9}{4}$ (d) 1

35.If sin C and cos C are the two roots of a quadratic equation  $2x^2 - px + 1 = 0$  where  $0 < C < \pi/2$ , than how many possible values can p have ? (a) 1 (b) 2 (c) 3 (d) 4

36.In a quadratic equation, with leading coefficient 1, Sheela read the coefficient 16 of x wrongly as 19 and obtains the root as -15and -4. Which of the following are the correct roots of the equation?

(c) -6, -10 (a) 8, 8 (b) 6, 10 (d) 12, 5

37.Both the roots of a quadratic equation  $x^2 - mx + 121 = 0$  are greater than 10. What is the minimum value of m?

(b) 22 (a) 21 (c) 23 (d) cannot be determine

38. If the equations  $x^2 - px + q = 0$  and  $x^2 - rx + s = 0$  have a root in common and the second equation has equal roots then q + s is equal to which one of the following? (a) pr/2 (b) 2pr (d)  $p^2 r$ (c) pr

39. If the two quadratic equations  $x^2 - bx + c = 0$  and  $x^2 - b'x + c = 0$  $\begin{array}{l} c' = 0 \text{ have a common root, what is the value of common root ?} \\ \text{(a)} \frac{b-b'}{c-c'} \qquad \text{(b)} \frac{c-c'}{b-b'} \qquad \text{(c)} \frac{b-b'}{c'-c} \qquad \text{(d)} \frac{c-c'}{b'-b} \end{array}$ 

40. The roots of the quadratic equation  $x^2 + 4a = 8x - 12a^2$  are real and unequal, Which one of the following? (a) 4/3 < a < 2 (b) -4/3 < a < -1 (c) -4/3 < a < 2 (d) -4/3 < a < 1

41.  $f(x) = x^2 + 2ax + 1$  and  $\alpha$  is root of the equation f(x) = 0, where a is real. Which one of the following is correct ? (a)  $f(\alpha) = 0$  and  $f(1/\alpha) \neq 0$ 



(b)  $f(\alpha) = 0$  and  $f(1/\alpha) = 0$ (c)  $f(\alpha) \neq 0$  and  $f(1/\alpha) \neq 0$ 

(d)  $f(\alpha) \neq 0$  and  $f(1/\alpha) \neq 0$ 

42. If the roots of  $x^2 + bx + c = 0$  are two consecutive integers, what is the value of  $b^2 - 4c - 1$ ? (b) 1 (d) 2 (a) 0 (c) -1

43. If the sum of n terms of a series is a quadratic expression in n, then the series is in

(a) G.P. (b) H.P. (c) A.P.

(d) Neither in G.P. nor in H.P. nor in A.P.

44. What is the common root in the equations  $lx^2 + 2mx + n =$ 0 and  $lx^2 + 2nx + m = 0$ ; where  $m \neq n$ ?

(c) 1 (d) Cannot be determine

45. The sum of the two roots of a quadratic equation is  $\sqrt[3]{\lambda}$  and the sum of their squares is  $\sqrt[3]{\mu^2}$ . Which one of the following is that equation ? 

(a) 
$$x^2 - \sqrt[3]{\lambda}x + (\sqrt[3]{\lambda^2} - \sqrt[5]{\mu^2}) = 0$$
  
(b)  $x^2 - \sqrt[3]{\lambda}x + (\sqrt[3]{\lambda^2} + \sqrt[5]{\mu^2}) = 0$   
(c)  $2x^2 - 2\sqrt[3]{\lambda}x + (\sqrt[3]{\lambda^2} - \sqrt[5]{\mu^2}) = 0$   
(d)  $2x^2 - 2\sqrt[3]{\lambda}x + (\sqrt[3]{\lambda^2} + \sqrt[5]{\mu^2}) = 0$ 

46. What is the number of solution of the equation  $x^2 - 5|x| +$ 6 = 0?

(a) 2 (b) 0 (c) 1 (d) 4

47. The roots of the equation  $x^2 + px + q = 0$  are both real and greater than 1. If r = P + q + 1, then which one of the following is correct?

(a) r must be greater than 0. (b) r must be less than 0. (c) r must be equal to 0. (d) r may be equal to 0.

 $48.ax^2 + bx + c = 0$  is a quadratic equation such that  $a \neq b \neq c$ and a + b + c =0. What is the nature of root?

(a) Both are positive. (b) Both are negative.

(c) They are real and distinct. (d) Both the imaginary.

49. Which one of the following is correct?

The equation  $x - \left(\frac{7}{x-3}\right) = 3 - \left(\frac{7}{x-3}\right)$ (a) has only one integral root.

- (b) has no roots.
- (c) has two equal integral roots.

(d) has two unequal integral roots.

50. If  $r_2, r_2$  are the roots of the equation  $x^2 - px + (p - 1) = 0$ ; for what value of  $(r_1^2 + r_2^2)$  minimum? (b) p = -1 (a) p = 0(d) p = 2(c) p = 1

51. If the roots of the equation  $4\beta^2 + \lambda\beta$ - 2 = 0 are of the form  $\frac{k}{k+1}$  and  $\frac{k+1}{k+2}$ , then what is the value of  $\lambda$ ? (a) 2k (b) 7 (c) 2 (d) k + 1

52. One of the roots of a quadratic equation with real coefficients is  $\frac{1}{(2-3i)}$ . Which of the following implication is/are true?

1. The second root of the equation will be  $\frac{1}{(3-2i)}$ 

2. The equation has no real root.

www.edgeacademy.co.in www.edgeexamportal.in contact no.-9461155543 Address - 1-B-24 Mahaveer Nagar Extension, Opp. Agni Shaman Kendra, Kota (Rajasthan)-324005

| Lage                                |              |
|-------------------------------------|--------------|
| Academy for NDA, CDS, SSB           |              |
| 3. The equation is $13x^2 - 4x + 1$ | = 0.         |
| Which of the above is/are correct?  | 2            |
| (a) 1 and 2 only                    | (b) 3 only   |
| (c) 2 and 3 only                    | (d) 1, 2 and |
|                                     |              |

 $\leq \mathbf{F}_{\mathcal{A}}$ 

53. Given 4a - 2b + c = 0, where a, b, c  $\epsilon$  R, Which of the following statement is/are not true in general? (a) (x+2) will always be a factor of the expression  $ax^2 + bx + c$ . (b) (x - 2) will always be a factor of the expression  $ax^2 + bx + c$ . (c) There will be a factor of the expression  $ax^2 + bx + c$  different

3

3

from (x + 2). Select the correct answer using the code given below:

| (a) 1 and 2 only | (b) 1, 2 and 3 |
|------------------|----------------|
| (c) 2 only       | (d) 1 only     |

54. If the sum of the squares of the roots  $x^2 - (p - 2)x - (p + 1) = 0$ (p  $\epsilon$  R) is 5, then what is the value of p? (a) 0 (b) -1 (c) 1  $(d)\frac{3}{2}$ 

55. What is the number of real solution of  $|x^2 - x - 6| = x + 2$ ? (a) 4 (b) 3 (c) 2 (d) 1

56. If  $(\log_3 x)^2 + \log_3 x < 2$ , then which one of the following is correct ?

| (a) $0 < x < \frac{1}{9}$ | (b) <del>1</del> / <sub>9</sub> <x< 3<="" th=""></x<> |
|---------------------------|-------------------------------------------------------|
| (c) 3 < <i>x</i> <∞       | (d) $\frac{1}{9} \le x \le$                           |

57. If sin  $\theta$  and cos  $\theta$  are the roots of  $ax + bx^2 + c = 0$ , then constant a, b, c will satisfy which one of the following condition? (a)  $a^2 + b^2 + 2ac = 0$ (b)  $a^2 + b^2 - 2ac = 0$ (c)  $a^2 - b^2 + 2ac = 0$ (d)  $-a^2 + b^2 + 2ac = 0$ 

58. If the equation  $x^2 + k^2 = 2(k+1)x$  has equal roots, then what is the value of ? (b)  $-\frac{1}{2}$ (a)  $-\frac{1}{3}$ (c) 0 (d) 1

59. How many real values of x satisfy the equation |x| +

|x - 1| = 1? (a) 1 (b) 2 (c) infinite (d) No value of x

60. If  $\alpha$ ,  $\beta$  are the roots of  $ax^2 + 2bx + c = 0$  and  $\alpha + \delta$ ,  $\beta + \delta$ are the roots of  $Ax^2 + 2Bx + C = 0$ , then what is the  $(b^2 - b^2)$  $ac)/(B^2 - AC)$  equal to

(a) 
$$\left(\frac{b}{B}\right)^2$$
 (b)  $\left(\frac{a}{A}\right)^2$  (c)  $\frac{(a^2b^2)}{(A^2B^2)}$  (d)  $\frac{(ab)}{(AB)}$ 

61. If  $\alpha$ ,  $\beta$  are the roots of  $ax^2 + bx + c = 0$ , then what is the value of  $(a\alpha + b)^{-1} + (\alpha\beta + b)^{-1}$ ?

(a) 
$$\frac{a}{(bc)}$$
 (b)  $\frac{b}{(ac)}$  (c)  $\frac{-b}{(ac)}$  (d)  $\frac{-a}{(bc)}$ 

62 If  $\alpha$ ,  $\beta$  are the roots of the equation  $x^2 - 2x$ -1 =0, then what is the value of  $\alpha^2 \beta^{-2} + \alpha^{-2} \beta^2$  ?

63. If the roots of the equation  $x^2 - (a - 1)x + (a + b) = 0$  and  $ax^2 - 2x + b = 0$  are identical, then what are the values of a and b?

| (a) a = 2, b = 4             | (b) a = 2, b = -4               |
|------------------------------|---------------------------------|
| (c) a = 1, b = $\frac{1}{2}$ | (d) a = -1, b = - $\frac{1}{2}$ |

64. If  $-x^2 + 3x + 4 > 0$ , then which one of the following is correct?

(a)  $x \in (-1, 4)$ (c)  $x \in (-\infty, -1) \cup (4, \infty)$ 

## (b) $x \in (+1, 4)$ (d) $x \in (-\infty, 1) \cup (4, \infty)$

65. If  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 + x + 1 = 0$ , then what is the equation whose roots are  $\alpha^{19}$  and  $\beta^7$ ?

(b)  $x^2 - x + 1 = 0$ (a)  $x^2 - x - 1 = 0$ (c)  $x^2 + x - 1 = 0$ (d)  $x^2 + x + 1 = 0$ 

66. If  $\alpha$  and  $\beta$  are the roots of the equation  $x^2 + 6x + 1 = 0$ , then what is  $|\alpha - \beta|$  equal to ?

(a) 6 (b) 
$$3\sqrt{2}$$
 (c)  $4\sqrt{2}$  (d) 12

67. The number of rows in a lecture hall equal to the number of seats in a row. If the number of rows is doubled and the number of seats in every row is reduced by 10, the number of seats is increased by 300. If x denotes the number of rows in the lecture hall, then what is the value of x? (a) 10 (c) 20 (d) 30

(b) 15

68. If  $\alpha$  and  $\beta$  are the roots of the equation  $lx^2 mx + m = 0, l \neq 0$  $m, l \neq 0$ , then which one of the following statements is corrects?

(a) 
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{m}{l}} = 0$$
 (b)  $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{m}{l}} = 0$   
(c)  $\sqrt{\frac{\alpha+\beta}{\alpha\beta}} - \sqrt{\frac{m}{l}} = 0$ 

(d) The arithmetic mean of  $\alpha$  and  $\beta$  is the same as their geometric mean.

69. For what value of k, are the roots of the quadratic equation  $(k-1)x^2 - 2(k-1)x + 1 = 0$  real and equal? (a) k = only(b) k= -3 only (c) k= 0 or k= 3 (d) k= 0 or k= -3

70. Which one of the following is correct ? If  $4 < x^2 < 9$ , then ? (a) 2 <*x*< 3 only (b) -3 <*x*< -2 only (c) 2 <*x*< 3, -3 <*x*< -2 (d) None of these

71. If  $\alpha$  and  $\beta$  are the roots of the equation  $ax^2 + bx + c = 0$ , then what are the roots of the equation  $cx^2 + bx + a = 0$ ? (a)  $\beta, \frac{1}{\alpha}$ (b) α,  $(d)\frac{1}{\alpha},\frac{1}{\beta}$ (c) - *α*, - *β* 

72. If x and y are real number such that x > y and |x| > |y|, then which one of the following is correct? (a) x > 0(b) v > 0(c) y<0 (d) x < 0

73. If roots of an equation  $ax^2 + bx + c = 0$  are positive, then which one of the following is correct? (a) Signs of a and c should be like.

- (b) Signs of b and c should be like.
- (c) Signs of a and b should be like.

(d) None of above.

74. If x is real and  $x^2 - 3x + 2 > 0$ ,  $x^2 - 3x - 4 \le 0$ , then which one of the following is correct? (a)  $-1 \le x \le 4$ (b)  $2 \le x \le 4$ (c)  $-1 < x \le 1$ (d)  $-1 \le x < 1$  or  $2 < x \le 4$ 

75. What is the value of 
$$\sqrt{5\sqrt{5\sqrt{...\infty}}}$$
 ?  
(a) 5 (b)  $\sqrt{5}$  (c) 1 (d)  $(5)^{1/4}$ 

www.edgeacademy.co.in www.edgeexamportal.in contact no.-9461155543 Address - 1-B-24 Mahaveer Nagar Extension, Opp. Agni Shaman Kendra, Kota (Rajasthan)-324005



76. For the real numbers p, q, r, x, y, let p < x < q and p < y < r, which one of the following is correct ?

| (a) $p < x < y < r$ | (b) $p < x < q < r$ |
|---------------------|---------------------|
| (c) $p < y < x < q$ | (d) None of these   |

77. One root of the equation  $x^2 = px + q$  is reciprocal of the other and  $p \neq \pm 1$ . What is the value of q ?

(a) q = -1 (b) q = 1 (c) q = 0 (d)  $q = \frac{1}{2}$ 

78. The numerical value of the perimeter of a square exceeds that of its area by 4. What is the side of the square?(a) 1 unit(b) 2 unit(c) 3 unit(d) 4 unit

79. If the equation  $x^2 + kx + 1 = 0$  has the roots  $\alpha$  and  $\beta$ , then what is the value of  $(\alpha + \beta) \times (\alpha^{-1} + \beta^{-1})$ ?

(a) 
$$k^2$$
 (b)  $\frac{1}{k^2}$  (c) 2  $k^2$  (d)  $\frac{1}{(2k^2)}$ 

 80. If x is an integer and satisfies  $9 < 4x - 1 \le 19$ , Then x is an element of which one of the following sets ?

 (a) {3, 4}
 (b) {2, 3, 4}

 (c) {3, 4, 5}
 (d) {2, 3, 4, 5}

81. A quadratic polynomial with two distinct roots has one real root. Then, the other root is

(a) not necessarily real, if the coefficients are real.

(b) always imaginary.

(c) always real.

(d) real, if the coefficients are real.

82. If sin  $\alpha$  and cos  $\alpha$  are the roots of the equation  $px^2 + qx + r = 0$ , then which one of the following is correct ? (a)  $p^2 + q^2 - 2pr = 0$  (b)  $p^2 - q^2 + 2pr = 0$ (c)  $(p + r)^2 = 2(p^2 + r^2)$  (d)  $(p - r)^2 = q^2 + r^2$ 

83. If the roots of the equation  $x^2 - bx + c = 0$  are two consecutive integers, then what is the value of  $b^2 - 4c$ ? (a) 1 (b) 2 (c) -2 (d) 3

84. If r and s are roots of  $x^2 + px + q = 0$ , then what is the value of  $(1/r^2) + (1/s^2)$ ?

| (a) $p^2 - 4q$           | (b) $\frac{p^2}{2}$                          |
|--------------------------|----------------------------------------------|
| (c) $\frac{p^2-4q}{q^2}$ | (b) $\frac{p^2}{q^2}$<br>(d) $\frac{p^2}{q}$ |

85. If  $\alpha$  and  $\beta$  are the roots of  $x^2 + 4x + 6 = 0$ , then what is the value of  $\alpha^3 + \beta^3$  ?

(a)  $-\frac{2}{3}$  (b)  $\frac{2}{3}$  (c) 4 (d) 9

86. If sum of the roots of  $3x^2 + (3p + 1)x - (p + 5) = 0$  is equal to their product, then what is the value of p ?

(a) 2 (b) 3 (c) 4 (d) 9

87. Let  $\alpha, \gamma$  be the roots of  $Ax^2 - 4x + 1 = 0$  and  $\beta, \delta$  are in HP, then what are the values of A and B respectively ? (a) 3, 8 (b) -3, -8 (c) 3, -8 (d) -3, 8

88. If  $2^{x} + 3^{y} = 17$  and  $2^{x+2} - 3^{y+1} = 5$ , then what is the value of *x* ?

(a) 3 (b) 2 (c) 1 (d) 0

89. If (x + a) is a factor of both the equal quadratic polynomials  $x^2 + px + q$  and  $x^2 + lx + m$ , where p, q, I and m are constant, then which one of the following is correct ? (a) a =(m - q)/(l - p)(l  $\neq$  p) (b) a = (m + q)/(l + p)(l  $\neq$  - p)

(c)  $l = (m - q)/(a - p)(a \neq p)$ (d)  $p = (m - q)/(a - l) (a \neq l)$ 90.Which one of the following is one of the roots of the equation  $(b - c)x^{2} + (c - a)x + (a-b) = 0$ ? (c)  $\frac{(b-c)}{(a-c)}$ (d)  $\frac{(c-a)}{(a-b)}$ (a)  $\frac{(c-a)}{(b-c)}$ (b)  $\frac{(a-b)}{(b-c)}$ 91. What is the value of x satisfying the equation  $16\left(\frac{a-x}{a+x}\right)^3 = \frac{a+x}{a-x}$ ? (c)  $\frac{a}{4}$ (b)  $\frac{a}{2}$ (a)  $\frac{a}{2}$ (d) 0 92. If  $\alpha, \beta$  are the roots of the equation  $2x^2 - 2(1 + n^2)x + 1$  $(1 + n^2 + n^4) = 0$ , Then what is the value of  $\alpha^2 + \beta^2$ ? (a)  $2n^2$ (b)  $2n^4$ (c) 2 (d) 0 93. The roots of  $Ax^2 + Bx + C = 0$  are rans s. For the roots of  $x^{2} + px + q = 0$  to be  $r^{2}$  and  $s^{2}$ , what must be the value of p? (b)  $\frac{(B^2 - 4AC)}{A^2}$ (a)  $\frac{(B^2 - 4AC)}{2}$ (c)  $\frac{A^2}{(2AC-B^2)}$ (d)  $B^2 - 2C$ 94. If the sum of the first two terms and the sum of the first four terms of a geometric with common ratio are 8 and 80 respectively, then what is the 6<sup>th</sup>term? (a) 88 (b) 243 (c) 486 (d) 1458 95. If  $\alpha, \beta$  are the roots of  $ax^2 + bx + b = 0$ , then what is  $\frac{\sqrt{\alpha}}{\sqrt{R}}$  +  $\frac{\sqrt{b}}{\sqrt{a}}$  equal to ?  $\sqrt{\alpha} \sqrt{a}$ (a) 0 (b) 1 (c) 2 (d) 3 96. If the roots of  $ax^2 + bx + c = 0$  are sin  $\alpha$  and cos  $\alpha$  for some  $\alpha$ , then which one of the following is correct? (b)  $b^2 - c^2 = 2ab$ (d)  $b^2 + a^2 = 2ac$ (a)  $a^2 + b^2 = 2ac$ (c)  $b^2 - a^2 = 2ac$ 97. If  $x = 2 + 2^{1/3} + 2^{2/3}$ , then what is the value of  $x^3 - 6x^2 + x$ ? (a) 1 (b) 2 (c) 3 (d) -2 98. The roots of the equation  $(x - p)(x - q) = r^2$ , where p, q, rare real. are (a) always complex (b) always complex (c) always purely imaginary (d) None of the above. 99. The equation  $x - 2(x - 1)^{-1} = 1 - 2(x - 1)^{-1}$  has (b) one roots (a) no roots (c) two equal roots (d) infinite roots 100. If a, b and c are real number, then the roots of the equation (x - a)(x - b)+(x - b)(x - c)+(x - c)(x - a) = 0 are always

<u>www.edgeacademy.co.in</u> <u>www.edgeexamportal.in</u> contact no.-9461155543 Address - 1-B-24 Mahaveer Nagar Extension, Opp. Agni Shaman Kendra, Kota (Rajasthan)-324005